
Completion and continuation of nonlinear traffic time series: a probabilistic approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 11369

(http://iopscience.iop.org/0305-4470/36/45/001)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/45
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 11369–11383 PII: S0305-4470(03)64959-0

Completion and continuation of nonlinear traffic time
series: a probabilistic approach

D Belomestny1, V Jentsch1 and M Schreckenberg2

1 Institut für Angewandte Mathematik, Interdisziplinäres Zentrum für Komplexe Systeme,
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Abstract
When dealing with nonlinear time series of car traffic on highways, one of
the outstanding problems to be solved is completion and continuation of data
in space and time. To this end, the underlying process is decomposed into
stochastic and deterministic components. The former is approximated by
Gaussian white noise, while the latter refers, apart from always existing trends,
to the space- and time-dependent jam propagation process. Jams are modelled
in terms of dynamical Bayesian networks with radial basis functions involved.
The models developed are used to tackle travel time estimation and prediction.
Results are obtained for one of the most crowded traffic areas of Europe, namely
the ring-like highway around Cologne.

PACS numbers: 45.70.Vn, 07.05.−t, 05.45.−a, 02.50.−r, 02.60.−x

1. Introduction

To improve freeway traffic conditions in both the long and the short run a variety of control
measures can be employed, such as ramp metering, variable speed limits or driver assistance
devices. Another promising class of measures to serve this purpose is providing travel time
information for travel decision making. The success of travel time information will critically
depend on how individuals will respond to it, which in turn depends on the travellers’
confidence in the accuracy and reliability of the information and the systems providing it.
However, prediction of travel times based on past and current traffic data is not straightforward
due to, among others, the high complexity and ill-predictability of the traffic process, faulty
or missing observations and different data sources.

An important issue to be mentioned is the difference between travel time estimation
and travel time prediction. Travel time estimation encompasses calculating or approximating
travel times after the trips have been completed. Estimates of travel times give insight into
the actual and past conditions of the road network. Different techniques have been developed
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on the basis of time-averaged speeds and volumes (for an overview, see [1]). Usually the
data are available only from a limited number of irregularly spaced detectors. In order to
ensure high-quality travel time estimations, however, properties of the correlation structure
in the underlying spatial–temporal process have to be taken into account. Due to the highly
nonlinear characteristics of traffic flow ordinary linear interpolation methods such as spatial–
temporal kriging are not appropriate and should thus be avoided.

On the other hand, travel time prediction addresses the problem of calculation or
approximation of travel times before trips have actually been made. Since no traffic
measurements are available for future periods, travel time prediction requires fundamental
knowledge of the underlying processes that will be used to understand, learn and simulate
these processes.

For the analysis and prediction of traffic variables data-driven, dynamical and empirical
models have been used.

(i) Data-driven models are statistical or inductive models, including (or combining) methods
of time series analyses, Kalman filtering, Bayes classification and estimation techniques,
as well as connectionist methods (see [5–9]). They require time series of past and present
traffic variables, such as speed, flux, density (occupancy) and travel times as input.

(ii) Dynamical models for travel time prediction, such as METANET, SIMRES, STM,
DynaMIT (see [1]) or OLSIM (see [2]), are based upon a (macro-, meso- or microscopic)
traffic simulation model. Most of these models demand dynamic matrices as input.
Individual or aggregate travel times (and other traffic variables) evolve upon repeatedly
updating some initial traffic states.

(iii) Empirical models mix results from statistical physics, traffic engineering and observations.
We refer to the work of Kerner et al [3, 4] who classified jams by a few relevant dynamical
features, on the basis of which they were able to trace jams for a specific detector
configuration.

Although impressed by the sheer number of models and simulations, we yet feel that the travel
time problem is far from being solved. This prompts us to search for another, hitherto not
much used approach: our starting point is data and our methods to handle them are drawn
from time series analysis. Cleverly mixed with results from empirical models and refined by
‘soft computing’ methods, we are able to solve the problem with satisfactory precision. Our
paper is organized as follows. In section 2, we describe and illustrate the database used in
this paper. In section 3, we present the basic formalisms necessary for tackling the problem
of completion and continuation. In section 4, we apply the methods of section 3 to complete
irregularly sampled traffic data on the Cologne ring. Once this is done, we are able to estimate
and forecast travel times. A summary and discussion of our findings is given in section 5.

2. Data

Our traffic data stem from the Cologne ring that embraces the city of Cologne. The ring has a
circumference of 52 km and carries an average flow of the order of 130 000 vehicles per day.
The larger part is equipped with three lanes, the rest contains two lanes. Speed is limited;
limits vary between 80 km h−1 and 120 km h−1. The Cologne ring represents a complex
network of numerous intersections, junctions and on-off-ramps (see figure 1).

The traffic database is excellent in our case; we have minute aggregates from 50 detectors
which are irregularly placed along the ring, with mean distance of about 1 km. Data have been
sampled for more than two years, ranging from July 2000 to February 2003. A typical set of
measurements from the eastern branch of the ring is shown in figure 2.
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Figure 1. Geometry of the Cologne ring. Shown are the ring along with the major branchings.

Each panel represents a specific location (indicated by kilometres) and the aggregated
velocity records for several hours and for all lanes. One clearly observes free flow, where
maximal speeds of 120 km h−1 are attained, as distinct from congested flow, where velocities
drop to 50 km h−1 or below. We note that congested flow on the ring is largely governed by
external factors, such as inflow and outflow of cars that fold into the internal traffic dynamics,
thus causing predominantly ‘stop and go’ oscillations with quasi-synchronized lane velocities.
This can be seen in figure 2, where congestion events are characterized by an increase of
velocity variation for each lane but a decrease of velocity variations (synchronization) between
each other. ‘Real’ jams with zero flux are the absolute exceptions on the Cologne ring.

3. The model

Another important feature can clearly be seen in figure 2. Traffic time series are nonlinear and
nonstationary near the transition zone, where free flow tends to become congested flow and
vice versa. Unfortunately, methods that cope with nonlinearities are still sparse [10] and often
impractical. Inventing new methods, however, is a hazardous endeavour. So we have decided
to combine known mathematical methods to generate problem-oriented methods. For this to
be successful, it is necessary first to analyse the specific nature of processes that underlie the
time series.

3.1. The physical base

The physical mechanisms consist of both random and deterministic components. Determinism
is introduced by the road geometry, traffic rules and various external factors, giving rise to
well-known trends, such as daily and weekly cycles. Superimposed on this are fluctuations,
reflecting random elements in the driver’s behaviour who seeks to maximize his own advantage
by braking, accelerating and lane changing. However, as can be seen from figure 2, the most
prominent features in traffic are jams or jam-like structures, characterized by a break-down in
velocity. Such events may be extended in time and space, but may as well be short lived and
much localized. Jam events have long been known, the principles of which have been revealed
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Figure 2. Velocity time series for six adjacent locations on the A3 near Heumar with driving
direction towards the south. Blue, red and green correspond to the left, middle and right lanes,
respectively.

by macroscopic theory [11]. In free-flow conditions, information flows in the same direction
as traffic does, while in congested conditions, information flows in the opposite direction.
So-called shock waves occur, as traffic from upstream is forced to slow down due to slower
traffic downstream. If the difference between speed and speed variations of the two colliding
regimes is large enough, the resulting jam will move in the upstream direction. However, it is
only recently that jams have been treated in a more systematic fashion (see [4]). According
to these authors moving jams are governed by a few parameters independent of their size,
origin and preceding traffic state. Exploiting, in addition, spatial correlations, jams seem to
be predictable and traceable. This will be taken up and applied to the Cologne ring traffic. In
a way, we formalize the empirical results presented in [3], without differentiating, however,
subtleties of jams as mentioned in [4]. For our purposes, this is not really relevant. We use a
Bayesian type of network to trace the evolution of jam-like structures. Combining this with
the methods of historical profiles, we are able to complete and continue the traffic time series.
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Y1 Y2 Y3 . . . YL

Figure 3. The structure of the jam tracing model.

This in turn is prerequisite for achieving our goal: estimating and predicting travel times, with
a statistically based error check included.

3.2. Evaluation of the method

Let �1, . . . ,�L be L regularly spaced locations on the road enumerated from downstream
to upstream. We assume that locations �k, k ∈ K, where K is a subset of {1, . . . , L}, are
equipped with detectors which measure velocity, flow and occupancy, among others. Data
are signalled in the form of 1 min aggregates to a remote station for further processing. The
resulting time series are interpreted as stochastic processes, denoted by Yk(t), which may be
decomposed into

Yk(t) = h(t) + fk(t) + εt k = 1, . . . , L (1)

where h(t) is a baseline representing free flow for the quantity under consideration, εt are
independent identically distributed random variables with variance σ 2 and fk(t) is the jam
process, where jam is used in a somewhat loose manner including all forms of congested traffic
(synchronized, stop and go, wide moving jam). The baseline can be obtained by averaging
the quantity of interest for different subsets of the original data set (for example, all Mondays)
in free-flow conditions. Jam process fk(t) is the stochastic approximation of the process
Yk(t) − h(t) by means of radial basis function (RBF)

fk(t) = w0
k +

M∑
j=1

w
j

k exp

[
−

(
t − c

j

k

)2(
τ

j

k

)2

]
t = 1, . . . , T (2)

where wk, ck and τk represent weights, centres and variances of the RBF, respectively. These
parameters form the hidden processes Sk = (wk, ck, τk). They are introduced to support
the jam model and supposed to be Markovian. The architecture of the resulting network is
sketched in figure 3. The hidden process passes all L locations giving rise (see (1)) to processes
Yk(t), some of which are observable (black circles).

The transition distribution for Sk is chosen for simplicity to have a factorial form

P(Sk|Sk−1) = P(wk|wk−1)P(ck|ck−1)P(τk|τk−1). (3)

We also assume that for some matrices B and D, positive definite matrices Q1,Q2,Q3 and
some vector m (all of which have to be estimated), the transition probabilities are given by

P(ck|ck−1) = (2π)−M/2|Q1|−1/2 exp{(ck − ck−1 + m)′Q−1
1 (ck − ck−1 + m)} (4)

P(wk|wk−1) = (2π)−M/2|Q2|−1/2 exp{(wk − Bwk−1)
′Q−1

2 (wk − Bwk−1)} (5)

P(τk|τk−1) = (2π)−M/2|Q3|−1/2 exp{(τk − Dτk−1)
′Q−1

3 (τk − Dτk−1)} (6)

P(Y (t)|S) = (2πσ 2)−1/2 exp

{
− (Y (t) − f (t; S))2

2σ 2

}
(7)



11374 D Belomestny et al

where the distributions of c0, w0, τ0 are assumed normal. Further, without loss of generality
we suppose that the set K is arithmetic, that is for some integer n > 0 the observable but
incomplete process Ỹ k is related to Yk in the following way:

Ỹ k = Ykn k = 0, . . . , N (8)

where N = [L/n] (note that observable quantities are marked by tilde ‘ ˜ ’). The problem of
completing the process at the points of missing detectors thus entails two sub-problems:

(i) estimation of S̃k on the basis of Ỹ k ,
(ii) estimation of transition probabilities P(Sk|Sk−1) on the basis of P(S̃k+1|S̃k).

3.2.1. Estimation of S̃k . The problem can be resettled as one of approximating the given
noisy time series by Gaussian RBF and at the same time holding the number of parameters
(e.g., the dimension of the process S) as small as possible.

Suppose we want to approximate an arbitrary function f (x) by a set of M radial basis
functions φj (x), centred on the centroids cj . The approximation of the function f (x) (denoted
by f̂ ) may be expressed as a linear combination of the radial basis functions:

f̂ (x) =
M∑

j=1

wjφj (x − cj ) (9)

where wj are real-valued weight factors. A typical choice for the radial basis functions is a
set of one-dimensional Gaussian kernels:

φj (x − cj ) = exp

(
− (x − cj )

2

2τ 2
j

)
τj > 0 cj ∈ R. (10)

Once the number and the general shape of the radial basis functions φ(x) is chosen, the RBF
network has to be trained properly. Given a training data set T of size NT ,

T = {(xp, yp) ∈ R × R, 1 � p � NT : yp = f (xp)} (11)

the training algorithm consists in finding the parameters cj , τj and wj , such that f̂ (x) fits the
unknown function f (x) as closely as possible. This is realized by minimizing a cost function.
After the best-fit function is calculated, the performance of the RBF network is estimated by
computing an error criterion. Consider a validation data set V, containing NV data points:

V = {(xq, yq) ∈ R × R, 1 � q � NV : yq = f (xq)}. (12)

The error criterion can be chosen to be the mean square error:

MSEV ≡ 1

NV

NV∑
q=1

(yq − f̂ (xq))
2 (13)

where yq are the desired outputs. Often, the training algorithm is decoupled into a three-stage
procedure:

• determine the centres cj of the Gaussian kernels,
• compute the widths of the Gaussian kernels τj ,
• compute the weights wj .

Since we are mainly interested in tracing such extreme events as jams we can place the centres
of the corresponding basis functions at points where local maxima (for density time series) or
local minima (for velocity time series) are located. The number of basis functions can be the
taken as the number of local maxima (respectively local minima). Other parameters should
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be chosen accordingly. The weights can be found by solving the linear equation (9). For
the width factors, typically two alternatives are considered. The first one consists in taking
the widths τj equal to a constant for all Gaussian functions [12, 13]. In [13], for example, the
widths are fixed as follows:

τ = dmax√
2M

(14)

where M is the number of centres and dmax is the maximum distance between these centres.
The second option consists in estimating the width of each Gaussian function

independently. This can be done, for example, by simply computing the standard deviation
of the distance between the data and their corresponding centres. An iterative procedure to
estimate the standard deviation is suggested in [14]. On the other hand, the computation of
the width factors τj by the ‘r-nearest neighbours heuristic’ is proposed in [15]:

τj = 1

r

(
r∑

i=1

|ci − cj |2
)1/2

(15)

where the ci are the r-nearest neighbours of centres cj . A suggested value for r is 2. This
second class of methods offers the advantage of taking the data variance into account. In
practice, the latter methods are able to perform much better, as they offer a greater adaptability
to the data than a fixed-width procedure.

3.2.2. Estimation of transition probabilities. After estimating S̃k we can turn to the second
problem of estimation transition probabilities P(St |St−1). Let Xt denote one of the two
processes wt , τt , then we have for the corresponding incomplete hidden process

X̃k = Xkn k = 1, . . . , N (16)

where N = [L/n]. If we set p(X̃k|X̃k−1) = N (CX̃k−1, R) for some matrices C
(corresponding to B or D) and R (corresponding to Q2 or Q3) and assume a Gaussian initial
state density for X̃1 with covariance matrix V1 and mean vector π1, namely

P(X̃1) = exp
{− 1

2 [X̃1 − π1]′V −1
1 [X̃1 − π1]

}
(2π)−k/2|V1|−1/2 (17)

then the corresponding log likelihood can be written as

Q = log P({X̃}) = −
N−1∑
t=1

(
1

2
[X̃t+1 − CX̃t ]

′R−1[X̃t+1 − CX̃t ]

)
− N − 1

2
log |R|

− 1

2
[X̃1 − π1]′V −1

1 [X̃1 − π1] − 1

2
log |V1| − NM log(2π). (18)

Maximization of Q with respect to C is equivalent to solving the equation

∂Q
∂C

= −
N−1∑
t=1

R−1X̃t X̃
′
t+1 +

N−1∑
t=1

R−1CX̃t X̃
′
t (19)

which yields the following estimate (in what follows we denote by the ‘ ˆ ’ an estimated
quantity)

Ĉ =
(

N−1∑
t=1

X̃t X̃
′
t+1

) (
N−1∑
t=1

X̃t X̃
′
t

)−1

. (20)
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For covariance matrix R, which is assumed to have inverse R−1, differentiation leads to the
equation

∂Q
∂R−1

= N − 1

2
R − 1

2

N−1∑
t=1

(X̃t+1X̃
′
t+1 − CX̃t X̃

′
t+1 − X̃t X̃

′
t+1C

′ + CX̃t X̃
′
tC

′) = 0 (21)

and

R̂ = 1

N − 1

(
N−1∑
t=1

X̃t+1X̃
′
t+1 − Ĉ

N−1∑
t=1

X̃t+1X̃
′
t

)
. (22)

If we assume multiple observation sequences we can effectively estimate the initial mean and
covariance. Assume K observation sequences of length N, and let X̃

(i)
t be the estimate of state

at time t given the ith sequence, then we have
∂Q
∂π1

= (
X̃

(i)
1 − π1

)
V −1

1 = 0 (23)

π̂1 = 1

K

K∑
i=1

X̃
(i)
1 (24)

∂Q
∂V −1

1

= 1

2
V1 − 1

2

(
X̃

(i)
1 X̃

(i)′
1 − X̃

(i)
1 π ′

1 − π1X̃
′(i)
1 + π1π

′
1

)
V −1

1 = 0 (25)

V̂ 1 = 1

K

K∑
i=1

(
X

(i)
1 − π1

)(
X

(i)
1 − π1

)′
. (26)

Upon setting p(Xt |Xt−1) = N (AXt−1, �) for some matrices A and � (see (5) and (6)) we
have due to (16)

P(X̃t+1|X̃t ) = N
(

X̃t+1;An−1X̃t ,

n−1∑
k=0

Ak�(Ak)N

)
. (27)

Hence, the estimation for A can be expressed as (Ĉ as given by (20) is clearly positive definite)

Â = (Ĉ)1/(n−1). (28)

Assuming, for example, that � is a diagonal matrix, we derive for the estimated �

�̂ = R̂

(
n−1∑
k=0

Âk(Âk)T

)−1

. (29)

For component c̃ we set

P(c̃t+1|c̃t ) = N (c̃t + a, F ) (30)

and the following estimates can be easily obtained:

â = 1

2

N−1∑
t=1

[(c̃t+1 − c̃t )
′ + (c̃t+1 − c̃t )] (31)

F̂ = 1

N − 1

(
N−1∑
t=1

c̃t+1c̃′
t+1 −

N−1∑
t=1

c̃t+1c̃′
t

)
. (32)

Finally, Q1 and m (see (4)) can be estimated by

Q̂1 = n−1F̂ m̂ = n−1â. (33)
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Figure 4. Results of completion for velocity time series during Friday (Cologne ring, driving
direction towards the south, left lane).

Table 1. Normalized mean square errors (NMSE) for different completion methods.

NMSE on test set

Number of detectors in training set Jam tracing method Temporal spatial kriging

15 0.033 0.059
13 0.039 0.065
10 0.048 0.072

5 0.052 0.085

4. Results

We are now in the position to test our nonlinear data analysis methods by means of real traffic
data which have been described in section 2.

4.1. Completion

Figure 4 shows the result of completion. Plotted are contour lines in the (x, t)-plane, where
x = 0 is the northernmost point, corresponding to Kreuz Leverkusen. Cars are heading
towards the south, i.e., increasing x. The region of low velocities in the afternoon hours is
most prominent around x = 0 and x = 45 km (Kreuz Leverkusen and Leverkusen, respectively).
In order to estimate the goodness of our completion method, we have divided all detectors into
two groups (training and test sets). Table 1 shows normalized mean square errors (NMSE)
on test sets for our method along with the widely used method of spatial–temporal kriging
(see, e.g., [18]). It turns out that errors are considerably smaller for our method, regardless
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Figure 5. Probability of jam formation on the Cologne ring (middle lane, cars move anticlockwise).

of the number of detectors involved. Once the velocities are completed, it is not difficult to
estimate the jam probability, which is depicted in figure 5. We recall that a jam is assumed to
occur when velocities drop below some threshold limit, typically of the order of 50 km h−1.
Figure 5 incorporates information for all Mondays over three years and covers the entire
Cologne ring, where x = 0 is defined as before. Note that the basic features of jam probabilities
are not affected by the specific threshold. What changes are the numbers (or colours), not
structures. So higher thresholds will entail lower probabilities, but will produce similar
patterns regardless of the specifics of jams.

Closely related to the above is the time it takes to travel a specified distance. Due
to inhomogeneities in space and time of the traffic process, travel time depends on the
starting and end points, as well as on day (Monday, Tuesday) and time of the day.
Figure 6 gives an idea of the shape of the harmonic velocity on Friday. The harmonic velocity is
defined as

Vk(s) = 1

Vk(s)
k = 1, . . . , L s = 1, . . . , T (34)

where Vk(s) is the aggregated velocity measured at the kth location during time (s, s + 1), with
s s + 1 being separated by 	t = 1 min.

Harmonic velocity gives a greater weight to small velocities and therefore makes congested
traffic regime more pronounced.

Suppose that we are able to complete the data at all locations �1, . . . ,�L. Then in terms
of V the arrival time at the ith location, provided the travel has begun at i = 1 location, can be
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Figure 6. Harmonic velocity baseline for Friday on A3 (Cologne ring).

expressed as

ti = ti−1 + dVi−1([ti−1]) (35)

where t0 is the departure time, d is the distance between consecutive locations and [t] is the
integer number of minutes in t. The corresponding travel times are

Ti = ti − t0 i = 1, . . . , L. (36)

Some estimates are shown in figure 7. For definiteness, the starting point is fixed at
x = 0. Travel times are given as a function of distance, for different departure times. Note that
the slope of the approximately straight lines depends on departure time (and starting point).
Results are summarized in form of a matrix (see table 2) where the corresponding slopes
for different combinations of starting points and departure times are calculated all along the
Cologne ring.

4.2. Continuation

The problem of continuation of a given time series parallels that of completion and can therefore
be tackled in a similar manner. More specifically, the processes Yk(t) are estimated on [0, T0]
for some T0 < T ; on [T0, T ] we set Yk(t) = hk(t) + f̂ k(t), where f̂ k(t) is the predicted
jam component. Predicted velocities in figure 8 are represented by the grey curve, while the
measured time series is represented by the black curve. Comparison of the two curves shows
that the trend, including the jam between 20 and 30 min, can be well reproduced; however the
details, in particular the shape of the jam, are not yet well captured. The following information
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Figure 7. Travel time estimation for Fridays. Different curves correspond to the different departure
times (in minutes). These estimates are obtained using completed velocity time series (see
figure 4).

Table 2. Slopes of the corresponding travel time curves for different departure times and starting
points.

Departure time (min)

Start (km) 100 200 300 400 500 600 700 800

0 0.192 0.201 0.204 0.242 0.287 0.229 0.219 0.215
1 0.192 0.201 0.203 0.241 0.282 0.228 0.211 0.211
2 0.194 0.201 0.202 0.242 0.267 0.232 0.211 0.212
3 0.195 0.200 0.201 0.246 0.268 0.237 0.212 0.213
4 0.195 0.200 0.202 0.250 0.270 0.245 0.213 0.214

turns out to be necessary for proper continuation:

• time series of past and present from the detector under consideration,
• time series of past and present from adjacent detectors for both downstream and upstream

directions,
• temporal information such as time of day and day of week

Travel time prediction is shown in figure 9. The grey line is the travel time estimation and
shows how long on average a driver is on the road, when he starts at x = 0 (Leverkusen) at
7 am and leaves the highway at some exit x > 0. The prediction horizon is chosen as in
figure 8, namely 30 min. The corresponding box plots of prediction for eight locations are
based on 50 samples from the estimated distribution. Every box indicates median, quartiles,
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Figure 8. Prediction of velocity records (grey) compared to the measured records (black) (collected
near Heumar).
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Figure 9. Box plots of predicted and estimated travel times (grey) for eight exit locations (based
on 50 samples from the predicted distribution).

extreme values and outliers. The overall impression is that the predicted values are in good
agreement with the estimations.
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5. Discussion and summary

What is interesting in traffic is the jammed situation, when velocity breaks down to values near
zero, and density goes up. The problem is to detect jams and mark endangered areas where
jams are most likely to occur. These areas depend on the time of day and the position on the
road. On the basis of traffic time series, we have developed a novel method that handles this
problem. It completes the spatially incomplete and irregular data sets and thus can catch the
hot spots encountered by drivers when they move along the Cologne ring.

Another problem is the prediction of jams. Predicting the future of a system is always
hazardous, so much the more, as traffic variables are essentially random: the time series reveal
a large amount of dynamical noise. This casts doubt on the predictability of the traffic system.
Luckily, jam events also reveal systematic features such as the jam propagation velocities.
This fact is exploited for both completion and prediction problems. However, only those jams
are predicted in this paper that already exist; for in this case, we can use our completion
method and reinterpret it as the continuation of (an already known) time series. Therefore,
we do not tackle the problem of predicting an event which at the time of prediction has not
yet occurred. Such an adventure requires the analysis of precursory signals (whatsoever exist)
and will draw on extreme value statistics, which may (or may not) answer questions such as
average waiting times for the next event, or the expected duration and depth of a jam. This is
however another story and will be tackled in future.

As already outlined above, an important step towards prediction is the completion of time
series. Normally, completion is handled by means of interpolation in space (or time). This
largely ignores the processes involved. We do better by a shrewd combination of temporal
and spatial data and appropriate combination of methods, i.e. historical method and jam
tracing techniques based on radial basis function networks. This yields satisfactory results
for completion, when records in space are sparse and irregularly distributed, and even good
results in the case of continuation. To summarize:

• Our method combines different temporal–spatial scales. For example, the short time scale
(of the order of minutes) is represented by noise, the meso time scale (of the order of
hours) by jam (the average extension of a jam in time is about 1 h on the Cologne ring)
and the long time scale (of the order of days) by the baseline or trend. Furthermore,
the model adaptively chooses the most appropriate combination depending on the current
traffic situation and the prediction horizon. This explains the fact that for predictions of
more than 30 min ahead, our method gives better results than other approaches (such as
artificial neural networks or historical profile method, see results in [5, 8, 9]).

• The structure of information in traffic flow is clearly reflected: the propagation of a shock
wave can be traced and its shape can be reconstructed. This shows that the model is
closely related to the underlying physical processes.

• The interpretation of results is straightforward. All three components (trend, jam
component, noise) are estimated separately and therefore results can be displayed for
every component.
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